
How to Bias a Study On COVID-19 Vaccine Safety in Pregnancy

JAMA provides an expert example. They nearly got away with it. But then we read it.

By James Lyons-Weiler, PhD

October 2025

Let me walk you through a masterclass in how to bias a study so thoroughly that e a real risk can disappear. Not with fraud, not with data tampering—just good old-fashioned design flaws, all pointing in one direction. (I will leave it to the reader to decide on this). We're going to talk about a study recently published in *JAMA Netw Open* by Bernard et al. (2025), which claims that getting an mRNA COVID-19 vacc during the first trimester of pregnancy isn't associated with birth defects.

You might have heard this result and thought, "Well, that's reassuring."

Let me show you why it's not.

The Setup: A Live-Birth Only Study

The researchers looked at over **527,000 live-born infants** in France, comparing the whose mothers got an mRNA COVID-19 vaccine in the first trimester with those didn't. They then looked at the rate of **major congenital malformations** (**MCMs**) a said: "No difference."

Their conclusion? The vaccine isn't teratogenic. It doesn't cause birth defects.

Here's the problem: They only looked at **live births**. That means any fetus with a severe enough defect to lead to **termination or fetal death** is simply **not counted**.

guess what? The most severe defects—the ones most likely to show up if a vaccine have a harmful effect—are the ones most likely to lead to **termination** or **stillbirth**

Let me repeat that: They deleted the most relevant cases before the analysis even started.

The Scale of the Omission

We don't need to guess how big this omission is. France participates in EUROCA' European congenital anomaly surveillance system. From their own data:

- About 8.35 per 1,000 pregnancies end in termination for fetal anomaly (TOP
- Another 1.11 per 1,000 end in perinatal death with a malformation.

That's 9.46 per 1,000 anomaly-affected pregnancies removed by design.

If you want that as a percentage, it's about 32% of all anomaly-affected pregnancie

So when Bernard et al. say they found no increased risk in their cohort, they're onleoking at the surviving 68% of anomaly cases. That's like claiming a ship is safe because most of the survivors didn't drown—without counting the ones who never made it onto the lifeboats.

The Bias Multiplier: A Lesson in Selection Bias

Here's how this works, mathematically. The observed odds ratio in a live-birth-only study (OR_obs) equals the true odds ratio (OR_true) multiplied by a bias factor. If vaccinated pregnancies are even 10% less likely to deliver an anomaly-affected infalive (due to higher termination or stillbirth), the observed odds ratio gets pulled d

Quick math:

- OR_obs = 0.98 (what they reported).
- 10% lower survival of affected pregnancies in vaccinated group → OR_true ~1.10.

• 20% lower \rightarrow OR true ~1.23.

That's all it takes to turn a real signal into "nothing to see here."

And remember, France's surveillance data already tells us that a third of anomaly-affected pregnancies never show up as live births. So the odds that vaccine-expos fetuses with defects were underrepresented is not speculative—it's baked into the design of analysis. Like we have seen so many times before.

Historical precedent makes clear that live-birth-only studies consistently underestimate teratogenic risk. For drugs such as valproate, isotretinoin, and thalidomide, early safety studies that limited analysis to surviving infants failed to detect strong signals of harm. Only when pregnancy registries began systematical including terminations for fetal anomaly (TOPFA) and stillbirths did the full scope risk become apparent. In the case of isotretinoin, for example, the prospective Motherisk and EUROCAT registry data revealed a striking prevalence of central nervous system and craniofacial defects—patterns that were underrepresented or entirely missed in live-birth analyses. Similarly, valproate's association with neura tube defects was underestimated until registry-based studies incorporated non-liv outcomes and stratified by timing of exposure.

This history isn't anecdotal—it's methodological canon. The WHO and EMA both emphasize the necessity of including prenatal losses in teratogenicity surveillance precisely this reason. The Bernard et al. study, by analyzing only live births and excluding all pregnancies ending in fetal death or termination, repeats the same estage design errors that delayed recognition of harm in past pharmacovigilance failures. The claim that "no increased risk" exists should therefore be interpreted as evidence of absence, but as a predictable artifact of an exclusionary analytic frama frame that, in prior contexts, has allowed dangerous exposures to persist unchallenged for years.

Other Ways They Softened the Signal

Let me show you how every other decision they made **also** worked to hide any positisk:

- Administrative Codes: They used billing codes to detect malformations. Thes miss subtle or late-diagnosed anomalies. That means more false negatives.
- First-Year Detection Window: Most anomalies were only looked for in the fir year of life. Some don't get diagnosed that early.
- Odds Ratios: For rare outcomes, odds ratios can understate elevated risks and overstate protective effects. A technical quirk—but one that always softens th blow.
- **Propensity Weighting**: They reweighted the comparison group to look like th vaccinated group (older, less deprived, more prenatal care). But more screenin means more diagnosis—and they still found slightly **lower** defect rates in the vaccinated group. That tells you the bias is stronger than the screening.

When every source of bias points in the same direction—toward the null or even "protective"—you don't have evidence of no risk. You have evidence of bias overpowering signal.

What Happens When You Correct for This?

We ran the numbers. If you apply just a 10% selection correction to their published values, here's what you get:

• Cardiac anomalies: OR rises from $1.01 \rightarrow 1.12$

• Limb anomalies: 1.09 → 1.21

• Hip dislocation: $1.23 \rightarrow 1.37$

All of those cross into elevated risk territory. And that's with **only 10%** differential selection. A 20% difference pushes those even higher.

If you're thinking, "Could vaccinated pregnancies really be 10% more likely to terminate anomaly-affected fetuses early?" The answer is yes. And again, France's EUROCAT data shows 32% of anomaly-affected pregnancies are not live births.

So we're not imagining the bias. We're quantifying it.

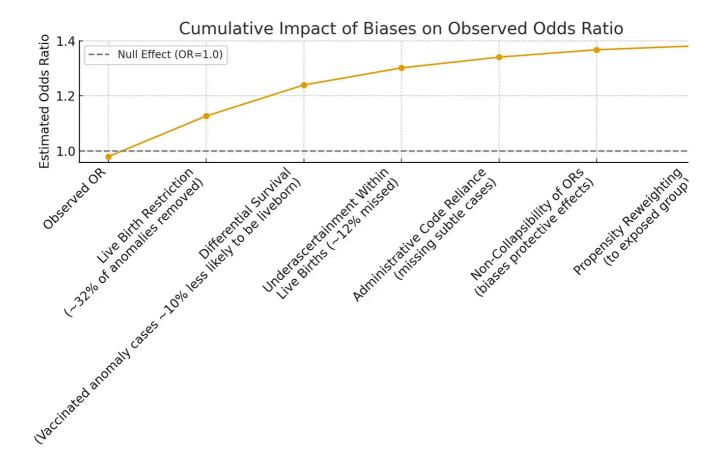


Figure 1. Visualization of the cumulative one-sided biases induced by the design c analysis.

Multiple Hypothesis Testing Can Mask

The authors conduct a massive battery of statistical tests—75 individual major congenital malformation (MCM) comparisons, 13 organ system comparisons, and stratified subgroup comparisons—yet report only six statistically significant resul in the direction of reduced risk. They dismiss these as likely type I errors arising fron multiple comparisons. But the omission here is twofold: first, they fail to apply any formal correction for multiple testing (such as Bonferroni or Holm), despite the sh volume of comparisons warranting it; and second, they neglect to explore what the expected distribution of false positives would look like under a truly null associati With over 160 comparisons, even a conservative α =0.05 threshold implies that 8–10 significant results should appear by chance alone. That *none* of these suggest elevarisk—even weakly—is statistically improbable and warrants scrutiny.

This absence of positive findings across so many comparisons is, paradoxically, a signal in itself. If noise alone were at play, we would expect both upward and downward fluctuations—some false harms, some false protections. The asymmetr outcome (only protective results reach nominal significance) suggests not random error, but systematic bias in effect estimation, reporting, or both. It implies either suppression of true positive associations or design artifacts (like live-birth conditioning or exposure misclassification) so powerful that they erase even chance level appearance of harm. In this light, the authors' insistence that their null result are "reassuring" fails not only in design logic, but also in basic statistical expectations.

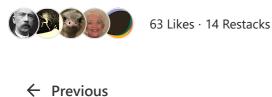
The Bottom Line

This isn't a smoking gun. It's a **missing body count**. When you build a study that excludes the most severe cases, undercounts the ones that remain, and smooths th rest with statistical weighting, you don't get a "safety study." You get a **safe-lookin study**.

Methodological bias in a study can either be due to incompetence or fraud. When of the biases point in the same direction, well I'll leave it to the reader to decide. Either way, the study is biased—in every direction that would help a null result co out looking "reassuring."

If you're a policymaker, a journalist, or a pregnant woman trying to make informed choices, understand this: A study that doesn't count all the outcomes can't make the claims.

Especially not about safety.


Want to learn how to spot these flaws yourself? Take our courses at IPAK-EDU. I teach you how to read what's clear on the page but is never stated.

Citations and data sources:

- Bernard et al., *JAMA Netw Open*. 2025;8(10):e2538039.
- EUROCAT Key Indicators: France, 2018-2022.

- Heinke et al., Paediatr Perinat Epidemiol. 2020.
- Velie & Shaw, Am J Epidemiol. 1996.

Thanks for reading Popular Rationalism! This post is public so feel free to share it.

Discussion about this post

Comments Restacks	
	Write a comment
	Gary Edwards ® Gary Edwards 1d
	Liked by James Lyons-Weiler, PhD
	It's astounding that this passed peer review as the major problem in design is so easy to see an
	been noted as a problem in the past.
	C LIKE (15) C REPLY
	2 replies
	Laraine Abbey-Katzev 🔞 Laraine's Substack 1d
	Liked by James Lyons-Weiler, PhD
	Brilliant article! Well, it may not be fraud but it's either evil or incredible stupidity. I'm casting m on evil.
	♥ LIKE (7)

16 more comments...

© 2025 James Lyons-Weiler \cdot <u>Privacy</u> \cdot <u>Terms</u> \cdot <u>Collection notice</u> <u>Substack</u> is the home for great culture